Beschreibung
Das Buch führt auf einfache und verständliche Weise in die Bayes-Statistik ein. Ausgehend vom Bayes-Theorem werden die Schätzung unbekannter Parameter, die Festlegung von Konfidenzregionen für die unbekannten Parameter und die Prüfung von Hypothesen für die Parameter abgeleitet. Angewendet werden die Verfahren für die Parameterschätzung im linearen Modell, für die Parameterschätzung, die sich robust gegenüber Ausreißern in den Beobachtungen verhält, für die Prädiktion und Filterung, die Varianz- und Kovarianzkomponentenschätzung und die Mustererkennung. Für Entscheidungen in Systemen mit Unsicherheiten dienen Bayes-Netze. Lassen sich notwendige Integrale analytisch nicht lösen, werden numerische Verfahren mit Hilfe von Zufallswerten eingesetzt.