0

Adjoint Topology Optimization Theory for Nano-Optics

Erscheinungsjahr: 2022
CHF 191,00
(inkl. MwSt.)

In der Regel lieferbar innerhalb 1-3 Tagen

In den Warenkorb
Bibliografische Daten
ISBN/EAN: 9789811679681
Sprache: Englisch
Auflage: 1. Auflage
Einband: Gebunden

Autorenportrait

Yongbo Deng is a professor at Changchun Institute of Optics Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, China. In 2012, he received his Ph.D. from Changchun Institute of Optics Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences (CAS). In 2018, he derived a Humboldt Research Fellowship for Experienced Researchers and was elected as the member of Youth Innovation Promotion Association of Chinese Academy of Sciences in the same year. During the period from September of 2018 to February of 2020, he worked in the Institute of Microstructure Technology, Karlsruhe Institute of Technology as a Humboldt Fellow. During the periods from May to July of 2016 and from September to November of 2017, he worked in the Institute of Microstructure Technology, Karlsruhe Institute of Technology, based on support of a Guest Professor Fellowship. During the period from December of 2014 to March of 2015, he worked in IMTEK, University of Freiburg, for his research collaboration on electromagnetic metamaterial. His research mainly focuses on topology optimization, microfluidics, and nano-optics.

Weitere Artikel vom Autor "Deng, Yongbo"

In der Regel lieferbar innerhalb 1-3 Tagen

CHF 191,00
inkl. MwSt.

In der Regel lieferbar innerhalb 1-3 Tagen

CHF 191,00
inkl. MwSt.
Alle Artikel anzeigen

Weitere Artikel aus der Kategorie "Technik"

In der Regel lieferbar innerhalb 1-3 Tagen

CHF 26,90
inkl. MwSt.

In der Regel lieferbar innerhalb 1-3 Tagen

CHF 176,00
inkl. MwSt.

In der Regel lieferbar innerhalb 1-3 Tagen

CHF 91,40
inkl. MwSt.

In der Regel lieferbar innerhalb 1-3 Tagen

CHF 45,30
inkl. MwSt.

In der Regel lieferbar innerhalb 1-3 Tagen

CHF 55,90
inkl. MwSt.

Nicht lieferbar

CHF 69,00
inkl. MwSt.
Alle Artikel anzeigen