Inhalt
Vorwort
Einleitung | Andreas Klein, Sebastian Dennerlein und Helmut Ritschl.
1. Hinführung
2. Begriffliche Annäherungen
2.1 Künstliche Intelligenz (KI)
2.2 Maschinelles Lernen – Machine Learning (ML)
2.3 (Künstliche) Neuronale Netze (KNN)
2.4 Deep Learning (DL)
3. Veranschaulichung einiger ethischer Herausforderungen und Lösungsansätze
4. Zu den Beiträgen dieses Buches
Literatur
Abschnitt 1: Grundlagen zu KI und erste ethische Überlegungen
Data Science und Künstliche Intelligenz | Wolfgang Granigg und Klaus Lichtenegger
1. Von Big Data zur Künstlichen Intelligenz
2. Was ist Künstliche Intelligenz?
3. Eine kurze Geschichte der KI
3.1 Die Anfänge: Rechnen und Codes knacken
3.2 Logik und Symbole
3.3 Maschinelles Lernen
3.4 Statistisches Lernen
3.5 Von der Natur das Lernen lernen
3.6 Die Deep-Learning-Revolution
3.7 Technische Infrastruktur
3.8 What else?
4. Wie lernen Computerprogramme?
4.1 Supervised Learning
4.2 Unsupervised Learning
4.3 Reinforcement Learning
5. Einige Herausforderungen im ML
5.1 Underfitting und Overfitting
5.2 Ausdruckskraft vs. Erklärbarkeit
Literatur 66
Wahrscheinlichkeit und Statistik – manchmal gegen unsere Intuition | Klaus Lichtenegger, Raphaele Raab und Wolfgang Granigg
1. Zugänge zur Statistik
2. Verzerrungen in den Daten
3. Die Crux mit dem Mittelwert
4. Regression zur Mitte
5. Das Simpson-Paradoxon
6. Fallstricke bei der Datenvisualisierung
7. Wahrscheinlichkeit wider die Intuition
8. Bedingte Wahrscheinlichkeiten
9. Der Satz von Bayes
Literatur
Die Hintergründe von KI im Gesundheitswesen verstehen lernen | Marco Tilli, Michael Melcher, Debora Stickler und Raphaele Raab
Vom Problem zum Machine Learning
Beispiel 1: Modellieren von BIP und Kindersterblichkeit
Was ist eine Lineare Regression?
Beispiel 2: Gruppieren von Brustkrebs-Merkmalen
Beispiel 3: Klassifikation COVID-19 vs. Grippe aufgrund der Symptome
Beispiel 4: Bildverarbeitung und -klassifikation
Aufbau eines CNNs
Arten von CNNs
Beispiel 5: Befunde verstehen und schreiben
Explainable AI im Medizinwesen
Was ist xAI eigentlich?
Wo xAI angewandt wird
Literatur
Ethische Perspektiven eines verantwortungsbewussten Umgangs mit Künstlicher Intelligenz|Andreas Klein103
1. Hinführung
2. Wie intelligent ist Künstliche Intelligenz – oder kann sie werden?
3. Ethik und die Frage nach dem guten Handeln
4. Ethik für KI
4.1 Ethik-Leitlinien für eine vertrauenswürde KI
4.2 Ethische Verpflichtungen
4.3 Grundrechte und KI
4.4 Vier ethische Grundsätze (Prinzipien)
5. Abschließende Würdigung und Ausblick
Literatur
Abschnitt 2: Anwendungsbeispiele von KI-Anwendungen in unterschiedlichen Domänen des Gesundheitswesens
Artificial Intelligence und Machine Learning in der medizinischen Bilddatenverarbeitung | Wolfgang Birkfellner
1. Einführung
2. Welche Daten werden verwendet?
3. Eine unverbindliche Anleitung für Experimente
4. Anwendungsmöglichkeiten
5. Stärken, Schwächen und Bedrohungen
6. Auswirkungen auf das Berufsbild
7. Ausblick und Herausforderungen
Literatur
ChatGPT als Arzt? |Lars Mehnen, Stefanie Gruarin, Mina Vasileva und Bernhard Knapp
1. Zusammenfassung
2. Einführung
3. Beschreibung der Untersuchungsmethode
3.1 Schritt 1: Ursprung der klinischen Fallvignetten
3.2 Schritt 2: Verwendung von ChatGPT
3.3 Schritt 3: Bewertung der richtigen Antworten
3.4 Schritt 4: Darstellung der diagnostischen Genauigkeit
4. Ergebnisse des Experiments
4.1 Diagnostische Genauigkeit von ChatGPT bei häufigen Erkrankungen
4.2 Diagnostische Genauigkeit von ChatGPT bei seltenen Erkrankungen
5. Diskussion der Ergebnisse aus dem Experiment
5.1 ChatGPT (Version 3.5 und 4) erreicht bemerkenswerte Genauigkeiten
5.2 Lernt ChatGPT nur auswendig?
5.3 ChatGPT kann / soll keinen menschlichen Arzt ersetzen
Literatur
Aktuelle Anwendungsszenarien und -beispiele von KI-Systemen in Diagnostik und Therapie | Bianca Buchgraber-Schnalzer und Bernhard Neumayer
1. Einleitung
2. Medizinische Bildgebung
2.1 Bildrekonstruktion
2.2 Bildanalyse
3. Kardiologische Erkrankungen
4. Mentale Gesundheit bzw. psychische Erkrankungen
5. Physiotherapeutische KI-Support-Tools
6. Kognitive Beeinträchtigungen und Demenz
7. Dermatologie und chronisches Wundmanagement
8. Diskussion
Literatur
Federated Learning | Hannes Hilberger, Helmut Ahammer und Markus Bödenler
1. Einleitung
2. Technische Grundlagen
3. Herausforderungen mit Federated Learning
4. Aktuelle Anwendungen von Federated Learning im Gesundheitsbereich
5. Zusammenfassung und Ausblick
Literatur
Medizinprodukte mit KI in der klinischen Praxis |Martin Baumgartner, Aaron Lauschensky, Hannes Perko, Tobias Allgeier, Stefan Beyer und Klaus Donsa
1. Einleitung
1.1 Hintergrund und Bedeutung von KI in der klinischen Praxis
1.2 Zielsetzung und Struktur des Kapitels
2. Beispiel 1: Regelbasierter Algorithmus beim telemedizinischen Monitoring von Patienten mit Herzinsuffizienz
2.1 Beschreibung des Medizinprodukts
2.2 Funktionsweise der KI-Anwendung
2.3 Bewertung aus medizinischer, regulatorischer, technischer und ethischer Sicht
3. Beispiel 2: Deep-Learning-basierte KI-Anwendung zur EEG-Analyse
3.1 Beschreibung des Medizinprodukts
3.2 Funktionsweise der KI-Anwendung
3.3 Bewertung aus medizinischer, regulatorischer, technischer und ethischer Sicht
4. Fazit
4.1 Was bedeutet das „Prädikat“ „Medizinprodukt mit KI“ für den Aufwand der Entwicklung und auch später im Routineein-satz?
4.2 Welche Vorteile bietet der Einsatz von KI in Medizinprodukten im Vergleich zu herkömmlichen Produkten ohne KI?
4.3 Welche Herausforderungen und Risiken sind mit der Integration von KI in Medizinprodukten verbunden?
4.4 Welche Fähigkeiten und Schulungen sind erforderlich, um Lösungen, die KI einsetzen, in Medizinprodukten anzuwenden?
Literatur
Moderner Datenschutz und vertrauenswürdige KI|Lea Demelius, Michael Jantscher und Andreas Trügler
1. Künstliche Intelligenz im Gesundheitsbereich
1.1 Vertrauenswürdige KI
1.2 Datenschutz und Privatsphäre
2. Technische Datenschutz-Maßnahmen für KI-Anwendungen
2.1 Homomorphe Verschlüsselung
2.2 Differential Privacy
2.3 Entwicklungen im Bereich Maschinelles Lernen
3. Anwendungen und Beispiele
3.1 KI-Analyse von Patient:innenakten
3.2 Mobilität und Ausbreitung von Infektionskrankheiten
4. Zusammenfassung
Literatur
Ethische Aspekte von KI in der präklinischen Krebsforschung | Claire Jean-Quartier und Fleur Jeanquartier
1. Einleitung
2. Beispiele für ethische Aspekte von KI in der präklinischen Krebsforschung
2.1 Ersatz von Tierversuchen durch in silico-Ansätze
2.2 Transparenz von KI und Verständlichkeit von Modellen
2.3 Nachhaltige KI und moralische Entscheidungsprinzipien
2.4 Offene Forschung im Sinne der Zugänglichkeit zum Nutzen der Gesellschaft
Literatur
Digitalisierung in der Pharmaindustrie | Sarah Stryeck und Johannes Khinast
1. Einführung in die Digitalisierung in der pharmazeutischen Industrie
2. Digitalisierung in der Wirkstoffentdeckung und -entwicklung
3. Digitalisierung in der Produktion
4. Herausforderungen bei der Digitalisierung der PI
5. Chancen durch KI-gestützte Verfahren in der PI
5.1 Effizientere Versorgung mit Arzneimitteln (aus Europa)
5.2 Qualität und Transparenz
5.3 Technologiesouveränität und Nachhaltigkeit
5.4 Bessere Patient:innenversorgung
Literatur
Abschnitt 3: Ethische und rechtliche Aspekte von KI-Anwendungen im Gesundheitswesen Kompetenzen ethischer Reflexionen | Andreas Klein
1. EU Ethik-Leitlinien und KI-Anforderungen
1.1 Verwirklichung einer vertrauenswürdigen KI: Anforderungen an KI-Systeme
1.2 Die Bewertungsliste (ALTAI)
2. Folgerungen aus den Ethik-Leitlinien für die Praxis
2.1 Ethikkodize
2.2 Ethikkommissionen
2.3 Der AI Act
3. Das MEESTAR-Modell
Literatur
Anhang
Methoden und Tools zur ethischen Reflexion in der agilen Entwicklung von Künstlicher Intelligenz | Sebastian Dennerlein, Christof Wolf-Brenner, Robert Gutounig, Stefan Schweiger und Viktoria Pammer-Schindler
1. Keine ethisch verantwortungsvolle KI ohne Reflexion
2. Zum Verständnis von ethischer Reflexion und relevanten Charakteristiken
3. Zur Verortung ethischer Reflexion im Entwicklungsprozess
4. Von ethischen Prinzipien zu deren Berücksichtigung in der Praxis
5. Darstellung und Illustration von sieben Methoden und Tools zur ethischen Reflexion
5.1 Methoden und Tools 1: Data Skills Framework
5.2 Methoden und Tools 2: Data Ethics Maturity Model
5.3 Methoden und Tools 3: Assessment List for Trustworthy AI (ALTAI)
5.4 Methoden und Tools 4: MEESTAR – Modell zur Ethischen Evaluierung Soziotechnischer Arrangements
5.5 Methoden und Tools 5: DEDA – Data Ethics Decision Aid
5.6 Methoden und Tools 6: Ethics in Tech Practice – A Toolkit
5.7 Methoden und Tools 7: Artificial Intelligence Incident Database (AIID)
6. Diskussion offener Herausforderungen in der ethisch reflektierten Gestaltung von KI
7. Reflexionsfragen
Literatur
Künstliche Intelligenz in der Medizin | Matthias Wendland
1. Einleitung
2. Anwendungsgebiete der KI in der Medizin
3. Spezifische Risiken der KI in der Medizin
3.1 Fehlerhafte Diagnostik und Therapieentscheidungen
3.2 Verzerrungen (Biases)
3.3 Datenschutz und Datenmissbrauch
Regulatorische Rahmenbedingungen für KI-basierte Medizinprodukte | Sabrina Linzer, Christoph Matoschitz und Klaus Donsa
1. Einleitung
1.1 Hintergrund und Bedeutung der regulatorischen Rahmenbedingungen
1.2 Zielsetzung des Kapitels
2. Regulatorische Anforderungen für Medizinprodukte mit KI
2.1 Medizinprodukteverordnung
2.2 Klassifizierung von Medizinprodukten
2.3 Konformitätsbewertungsverfahren und CE-Kennzeichnung
2.4 Anforderungen an die Technische Dokumentation
2.5 Entwicklung von KI-basierter Software als Medizinprodukt
3. Wertvolle Orientierungshilfen bei der Entwicklung und beim Einsatz in der klinischen Praxis
3.1 Praktische Umsetzung: Normen, Spezifikationen und Leitfäden
3.2 Verantwortung von Herstellern und Anwendern von Medizinprodukten
3.3 Haftungsfragen bei Fehlern oder Schäden durch KI-Anwendungen
3.4 Datenschutz und Datensicherheit
4. Fazit
Literatur
Abschnitt 4: Konsequenzen von KI für die Gesundheitsversorgung. Transformation der Handlungsfelder in Gesundheitsberufen
Einbettung von KI und Ethik in Curricula der Gesundheitsberufe am Beispiel eines cMOOCs | Helmut Ritschl, Waltraud Jelinek-Krickl, Rupert Beinhauer, Julia Tomanek, Bianca Buchgraber-Schnalzer und Marco Tilli
1. Einbettung neuer inhaltlicher Entwicklungen im beruflichen Handlungsfeld der Gesundheitsberufe
2. Beschreibung der neuen Modulkonstruktion: Didaktik, Kompetenz, Kompetenzlevels, Lernziele
3. Strategie zur Identifikation von Themen und Inhalten zu KI-Anwendungen in einer konkreten Lehrveranstaltung
4. Diskussion der Tiefe und der Methode der Wissensvermittlung – didaktische Reduktion
5. Mögliche Erfolgsfaktoren zur Einbettung der neuen Lehrinhalte zum Thema KI und Ethik
6. Muster eines cMOOCs zur Einführung in die KI für Gesundheitsberufe am Beispiel des Handlungsfeldes Radiologietechnologie
Literatur
Veränderung des Berufsbildes für Fachärzt:innen der Radiologie|Erich Sorantin, Ariane Hemmelmayr und Michael Georg Grasser
1. Hinführung und erste Überlegungen
2. Der Workflow in der Radiologie als Ausgangspunkt möglicher Transformationen
2.1 Veränderung des Arbeitsfeldes „Clincial Decision Support“
2.2 Veränderung des Arbeitsfeldes in der Bildakquisition und Rekonstruktion
3. Veränderung des radiologischen Befund-Arbeitsplatzes und der Befunderstellung
4. Der blinde Fleck –Cybersicherheit und Datenschutz in der Radiologie – ein neues Handlungsfeld rückt immer näher
4.1 Datenschutzrechtliche Sicherheitsaspekte
5. Zusammenfassung
Literatur
Künstliche Intelligenz und die Veränderung der Handlungsfelder von nicht-ärztlichen Gesundheitsberufen |Helmut Ritschl, Andreas Jocham, Wolfgang Staubmann, Dalibor Jeremic, Eva Mircic, Felix Mühlensiepen und Lucia Ransmayr
Ad (I): Exemplarische Entwicklungen der Gesundheits- und Krankenpflege durch KI-Anwendungen
Ad (II): Exemplarische Entwicklungen der Diätologie durch KI-Anwendungen
Ad (III): Exemplarische Entwicklungen in der Radiologietechnologie durch KI-Anwendungen
Ad (IV): Exemplarische Entwicklungen in der biomedizinischen Analytik durch KI-Anwendungen
Ad (V): Exemplarische Entwicklungen der Logopädie durch KI-Anwendungen
Ad (VI): Exemplarische Entwicklungen der Physiotherapie durch KI-Anwendungen
Fazit und Schlussfolgerung aus den Betrachtungen der nicht-ärztlichen Gesundheitsberufe
Literatur
Was wollen wir von dem, was wir technisch können, realisieren? | Christof Wolf-Brenner, Nina Wolf-Brenner und Martin Semmelrock
1. Einführung
1.1 Eine typische Aufnahme
1.2 Herausforderungen im Aufnahmeprozess
2. Eine Vision für KI im Aufnahmeprozess
2.1 Self-Service Triage
2.2 Schätzung des täglichen Zustroms und Abstroms von Patient:innen
2.3 Empfehlungen zur Auswahl der Laboruntersuchungen
3. Ethische Herausforderungen und Erwägungen
Literatur
KI zur Optimierung von Patient:innen-Flüssen im Gesundheitswesen| Daniel Pölzl, Robert Darkow, Susann May, Gernot Reishofer und Helmut Ritschl
1. Hintergrund / Ausgangssituation
2. Gesundheitskommunikation mittels KI-basierten Chatbots und NLP-Übersetzer zur Unterstützung der Patient:innen-Flüsse
3. Gesundheitsvorsorge/Gesundheitsbeobachtung mittels AI gestütztem SMART Health Monitoring
4. Autonome KI-gesteuerte Drohnen zur Unterstützung in Medikamentenzulieferung, Notfallmedizin, Katastrophenmanagement sowie Search and Rescue
5. Fazit für die Unterstützung von Patient:innen-Flüssen durch KI Anwendungen
Literatur
Verzeichnis der Autorinnen und Autoren