Autorenportrait
Inhaltsangabe1. Introduction.- 2. Concepts for the Analysis of the ES.- 3. The Progress Rate of the (1 % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % frxb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qadaqadaWdaeaapeGaaGyma8aadaWfGaqaa8qacaGGSaaal8aabeqa % a8qacqGHRaWkaaGccqaH7oaBaiaawIcacaGLPaaaaaa!3C4E! $$\left( {1\mathop ,\limits^ + \lambda } \right)$$ ?)ES on the Sphere Model. 5. The Analysis of the (?, ?)ES. 6. The (?/?, ?) Strategies or Why "Sex" May be Good. 7. The (1, ?)?SelfAdaptation. Appendices. A. Integrals. A.1 Definite Integrals of the Normal Distribution. A.2 Indefinite Integrals of the Normal Distribution. A.3 Some Integral Identities. B. Approximations. B.1 Frequently Used Taylor Expansions. B.3 Cumulants, Moments, and Approximations. B.3.1 Fundamental Relations. B.3.2 The Weight Coefficients for the Density Approximation of a Standardized Random Variable. B.4 Approximation of the Quantile Function. C. The Normal Distribution. C.3 Product Moments of Correlated Gaussian Mutations. C.3.1 Fundamental Relations. C.3.2 Derivation of the Product Moments. D. (1, ?)Progress Coefficients. D.2 Table of Progress Coefficients of the (1, ?)ES. References.