0

Information Theory and Statistical Learning

Emmert-Streib, Frank / Dehmer, /
Erscheinungsjahr: 2008
CHF 127,00
(inkl. MwSt.)

In der Regel lieferbar innerhalb 1-3 Tagen

In den Warenkorb
Bibliografische Daten
ISBN/EAN: 9780387848150
Sprache: Englisch
Auflage: 1. Auflage
Einband: Gebunden

Beschreibung

InhaltsangabeAlgorithmic Probability: Theory and Applications.- Model Selection and Testing by the MDL Principle.- Normalized Information Distance.- The Application of Data Compression-Based Distances to Biological Sequences.- MIC: Mutual Information Based Hierarchical Clustering.- A Hybrid Genetic Algorithm for Feature Selection Based on Mutual Information.- Information Approach to Blind Source Separation and Deconvolution.- Causality in Time Series: Its Detection and Quantification by Means of Information Theory.- Information Theoretic Learning and Kernel Methods.- Information-Theoretic Causal Power.- Information Flows in Complex Networks.- Models of Information Processing in the Sensorimotor Loop.- Information Divergence Geometry and the Application to Statistical Machine Learning.- Model Selection and Information Criterion.- Extreme Physical Information as a Principle of Universal Stability.- Entropy and Cloning Methods for Combinatorial Optimization, Sampling and Counting Using the Gibbs Sampler.

Weitere Artikel aus der Kategorie "Informatik & EDV"

In der Regel lieferbar innerhalb 1-3 Tagen

CHF 29,50
inkl. MwSt.

Nicht lieferbar

CHF 16,90
inkl. MwSt.

In der Regel lieferbar innerhalb 1-3 Tagen

CHF 44,00
inkl. MwSt.

Nicht lieferbar

CHF 26,90
inkl. MwSt.

In der Regel lieferbar innerhalb 1-3 Tagen

CHF 26,90
inkl. MwSt.
Alle Artikel anzeigen